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ABSTRACT

The body—orthis report wes-writhtenmes-—a—econtributiomto-tie

Algorithas. seotion of-the-Commnications.af the AQH-em consists of six
ALGOL procedures with comments. Procedure FASTTRANS 'ORM computes the

complex finite Fourier transform or its inverse, using a modified vers.lon
of the fast Fourier transform algorithm proposed by Cooley and Tukey.
Procedure REALTRANSFORM similarly computes the real Fourler transform

and inverse. The remaining four procedures are building blocks used

in the first two procedures: they may be combinéd in other ways, for
example, to form procedures for computing convolutions and power speétrel
density function estimates. The fast Fourier transform is a significant
advance over previous methods, in that the number of arithmetic operations
1s proportional to n 1032 n instead of nZ. Detailed methods of computing
this transform are shown here in the lan;;age of ALGOL A new approach
to organizing the computations is used, one that makes practical the
solution of large problems in which data overlay within high speed storage

will occur.
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+ALOOL PROCEDURES FOR THE FAST FOURIER TRANSFORM

Richard C. 8ingleton *
Stanford Research Institute,
Menlo Park, Californis.

The following procedures are based on the Cooley-Tukey algorithm [1,2,3]
for computing the finite Fourier transform of a complex data vector; the
dimension of the data vector is assumed here to be a pcwer'or two. Procedure
FASTTRANSFORM computes either the complex Fourier transform or its inverse.
Procedure REALTRANSFORM computes either the Fourier coefficients of a sequernce
of reel data points or evaluates a Fourier series with given cosine and sine
coefficlients. The number of arithmetic opera.tic;ns for éither procedure is
proportional to n ].og2 n, where n is the number of data points.

Procedures FASTFOURIER, REVERSEFOURIER, REORDER, and REALTRAN are building
blocks; and are used in the two complete procedures.mentioned above. The fast
transform can be computed in & number of different ways, and these buillding
block procedures were writ;cen 80 as to meke practical the computing of large
transforms on a systea with multiprogramming a.nd/or virtual memory. Data is
accessed in sub-sequences of gonsecuttve array elements, and as tuch computing
as possible is done in one section of the data before moving on to another.
Procedure FASTFOURIER computes the Fourier transform, or inverse, of data in
reverse binary order and leaves the result in normal binary order. Procedure
REORDER permutes a complex vector from binary to reverse binary order or from
reverse binary to binary order; this procedure also p:rmutes réal data in
preparation for efficient use of the complex Fourier transform. The procedure
REALTRAN 1is used to unscramble and combine the complex transforms of the even
and odd numbered elements of a sequence of real data points; this procedure is
not restricted to powers of two and requires only that the number of data points

be even.

* This vork was supported by Stanford Research Institute, out of Research
and Development funds '
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procedure FASTTRANSFORM(A, B, m, inverse);

value m, inverse; integer m; Boolean inverse;
array A, B;

comment Computes the finite Fourier transform of o complex
data points, using the Cooley-Tukey algorithm [1]. The
parameter m determines the dimension n=2" of the transform .
m>1 is assumed. The arrays A[O:n-1] and B{O:n-1] initially
contain the real and imaginary components of the data
vector, and, upon completion contain the transformed values.

If inverse 1is false, the Fourier tranasform
n-1 )
(x,+iy,) = 2N (ak+1b ) exp (i2njk/n)
J 7, k

n
ko fOI' Jgo, l, L) o,n-l

is computed, where the terms (a.k+1bk) represent the initial data
array values end (x J+1yJ) represent the transforued
values. If inverse is true, the inverse (complex

conjugate) Fourier transform

n-1

(xy4y) = 2= 5 (a,+10y) exp (-12n3k/n)

i -

n
kzo I'OI' JSO, l, LERY ] n-l

is computed, where (ak+ibk) and (xd+iya) again represent

the initial and transformed values. Tie transform

followed by the inverse transform or the inverse

transform followed by the transform giveg an identity

transformation. The procedures FASTFOURIER and REORDER

are used by this procedure and must also be declared;
begin if inverse then

begin FASTFOURIER(A, B,m, 1/sqrt(2tm),true);
REORDER(A, B, m, false);
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end else

‘begin FASTFOURIER(A, B, m,1/sqrt(2tm), false);
, ' REORDER(A, B, m, false);

end

end FASTTRANSFORM;
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procedure REALTRANSFORM(A, B, m, inverse);

value m, inverse; integer m; Boolean inverse;

array A,B;
comment Computes the finite Fourier transform of 2m+1'2 8
real data points, using the Cooley-Tukey algorithm[l,2].

If inverse is false, the arrays A[O:n] and B{O:n], where
n=2? are assumed to contain the first 2% reasl data
points Xy, Xy, ...X_ , 85 Al0], Al1],...A[n-1) and

the remaining 2" real data points XpoXp qseeeXy 4 8S
B[0], B[1],... B[n-1]. On completion of the transform
the arrays A and B contain respectively the Fourier

cosine and sine coefficients 8 and bk’ computed

according to the relations

2n-1

EE: X, cos (rrdk/n) for k=0,1,... n
J=0

= o

a_kz

and 2n-1

ZZ-— Xy sin (nJk/n) for k=0,1,... n.

k=0

D =
k

B o

If inverse is true, the arrays‘A and B are assumed to
contain initially n+l cosine coefficlents 8yr8y5 000 B

and n+l sine coefficients bO’bl"" bn, wvhere

bo = bn = 0. The procedure evaluates the corresponding
time series XgrXqrene Xon 99 where
%0 = %n
Xy= 5+ E [ak cos (rik/n) + b, sin (ndk/n)] + 5
k=1

and leaves the first n values as A[0], A[1),... A[n-1] and

the remaining n values as B[O}, B[1],... B[n-1].




The procedures FASTFOURIER, REVERSEFOURI%R, REORDER, and

REALTRAN are used by this procedure, and must also be

declared;

begin if inverse then
begin RFALTRAN(A, B, 21m,true,true);

FASTFOURIER(A, B, m, 1/2, true);

REORDER(A, B, m, true);
end else

begin REORDER(A, B, m, true);
REVERSEFOURIER(A, B, m, 1/2¢ (m+1), false);

REALTRAN(A, B, 21m, false, false);

end

end REALTRANSFORM;
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:Eroceduru FASTFOURIER(A, B, m, scale, negexp);

value m,scale,negexp; integer m; real scale;

Boolean negexp; array A,B;

comment Computes the finite Fourier transform of 2" complex data
points, using a modified version of the Cooley-Tukzy fast
transform algorithm [1]. The data is assumed *o be in normsl
order in arrays A[O:n-i] and B[O:n-1] for the real and 1magin§ry
components respectively where n=2" 1s the dimension of the
transtorm and m>) 1i1s assumed. The transformed result replaces
the original data, but 1s arranged in reverse binary order.

That 1is, the Jth value of the result, where J = Jm_lzm'l +

Jm_EEm'a + «ee + 3,2 43, is found in location

jOEm'l + Jlem-E # weo # 3 52 + 3 ) Of arrays A and B.

Procedure REORDER can be used to permute the result to normal
ordering, 1if desired. If negexp is false, the Fourier

transform
n-1

(xJ + iyJ) = scale ZZ_.(ak+1bk) exp (i2njk/n)
k=0
for J = O,l, noon'l
is computed, and if negexp is true, the corresponding
complex conjugate transform is computed, using a minus sign
in the exponential terms. The terms (ak+ibk) represent
the initial values, and (xd+iyd) represent the transformed values;

begin integer J,k, kk, kb, ks, JJ, n, nq, span;

real re,im,cn,sn,rad;

integer array C,D[0:m]; array CC,SS[0:m];

C{0] := n := 1;
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ks := n;

for kk :=C(m-1]-1 step -1 until O do

begin ks := ks-1; re := A[kk]

-Alks];

| A(kk] := scaleX(A[kk]+A[ks]);

Afks] := scalexre; im := B[kk]-B[ks];
Blkk] := scelex(B[kk]+B[ks]);
Blks] := scalexim

end;

J3 = kb := O; »J t= m = m-2

for k := O step 1 wntil m do D[k] := C[z-k];

; nq := Clm];

rad := 6.28318530718/n; go to I2;

if 35>D[3] then

begin JJ := 3J-dl3); J := JN1
else JJ := JI+D[J];

span := C[J]; if J4<D[J] then

begin k := spanxJJ;

; g0 to L end

ccld] := en := sin((nq-k)xrad);

SS[J] := sn := sin(kxrad)

end else

begin cn := -SS8{J]; sn := CC[J] end;

if negexp then sn := -sn;

for kk := kb+span-1 step -1 until kb do

begin ks := kk+span;

re := cnxA[ks]-snxB[ks];

im ¢

snxA[ks ]+cnxB(ks ];
Alks] := Alkk]-re; Alkk]

B(ks] := B[kk]-im; B[kk]

end;

4L AN A

:= Alkk]+re;

:= B[kk]+im;




begin J§ := J-l;_ gO to L2 end;
kb := kb+2; if kb<n then g0 to L;
end FASTFOURIER;
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procedure REVERSEFOURIER(A, B, m, scale, negexp);

value m,sgale,negexp; integer m; real scale;
Boolean negexp; array A,B;

comment Computes the finite Fourler transfoi. of 2" cpmplex.data
points, using a modified version of the Sande-Tukey [2,3] fast
transfbrm.\ The data 1s essumed to be in reverse binary order
in arrays A[O:n-1] and B[O:n-1] for the resl and imaginary
componentz respectively, where n=2" end w>l are assumed.
The data may be in this ordering due to an earlier transform
by procedure FASTFOURIER or & permutation by procedure
RECRDER. Ths transformad result replaces the original
data, and is left in normal ordering. IFf negexp is false

the Fourier transform
n-}
Y
(xj+iyJ) = scale ;t (akjibk) exp (12nk/n)
k=0
fOI‘ J:O’ 1’ .0 on-l
i1s computed, and if negexp 1s true, the corresponding
complex conjugate transform is computed, using a minus
sign in the exponentiel terms. The terms (ak+ibk)

represent the initial values, and (xJ+iy the transformed

5
values;
begin integer J, k,kk, kb, ke, JJ, n,nh,! i, span;

real re,im,cn,sn,rad;

integer array C,D[Oim}; array CC,SS[0:m: ;

c{o] :=n := 1

for k := 1 step 1 until m do Clk) := n := n+n;

nh := Clm-1]; nq := C[m-2];
red := 6.28318530718/n;
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@ = m-2; JJ := nh-1;

for k := 0 step 1 until m do D[k] := nh-C[k];

for kb := n-2 step -2 until 0 do

begin spen := 1; J := m; k := JJ;
1f k<nq then

bezin cn := S8[J]; sn := ~CcC{4] end else

begin CC[J] := cn := -sin((k-ny)xred);
SS{d] := sn := sin((nh-k)xrad)

end;

if negexp then sn := -sn;

for ¥k := kb+span-l step -1 until kb <N

Legin kv := kk+span;
re := A[kk]-A[ks]; A[kk] := A{kk]+A[ks];
im := B[kk]-Blks]; Blkk] := B[kk]+B[ks];

Alke] := cuxre-snxim; Blks] := snxre+enxim;
end:
if 33<DlJ] then
begin 93 := J4+CLJ); § := J-1; span := span+span;
if J<O then go to L2; k := k+k; g to L
end
else 33 := J3-ClJ]

end;

: span := nh; ks := kb := nh-l;

for kk := O step 1 until kb do

begin ks := ks+l; re := Alkk]-A[ks];
Alkk] := scalex(A[kk]+A[ks]); Alks] := scalexre;
im := B[kk]-Blks]; Blkk] := scaleX(B[kk]+Blks]);
Blks] := scalexim

end;
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procedure REORDER(A,B,m,reel); value m,reel;

<11~

integer m; Boolean reel; array A,B;

comment If reel is false, the 2™ elements each of arrays A[O:n-1]

and B{O:n-1) are permuted from normal to reverse binary

orde .g or from reverse binary to normal order. The pair

_ ~m=1 m-2 .
of velues 1in location J = Jm-l‘ + Jm-le + cee + 312 + JO
i1s interchanged with the pair of values in location

m-1 »M=2 -
+ Jl + .. *+ Jm-2d + Jm-l' Doing the

permutat ion twice gives an identity transformation. If

i
reel is true, it is assumed that aisequence of 2m+1 real

k= g2

values, with the first 2" values in arrey A and the second

2% values in array B, 1s elther to be permiuted in preparation

for cowmputing Fourier coefficients or is the expectéd

final result of evaluation of 2 real Fourier serles. The
permutation mede is first to interchgnge each even numbered

entry ir B with the next highsr odd numbered entry in A,

then to permute adjacent pairs of entries in A and B to reverse
binary crder. Again, doing the per&utatiOn twice gives an identity

transformation. m > 1 is assumed;

begin integer 1,4, 3J,k, kk, kb, ks, ku, 1ig, n;

real t;

integer array C,LST[O:m];

c{0] := n := 1;

for k := 1 step 1 until m do C[k] := n := n+n;

J == m-1; 1 := kb := O; if r=el then

begin ku := n-2; for k := 0 stép 2 uniil ku do
 begln t := Alk+l]; Alk+l] = 3[k]; Blk) := t end
end else

m = m-1; lim := (@+2) < 2;




L: ku := ks := C[J]+kb; JJ := Clm-3]; kk := kb+JJ;
L2: k := kk+3J;

L3: t := A[kk]; A(kk] := A[ks]); A[ks]) :

L}
ct
ws

n
ct
-e

t := Blkk]; Blkk] := Blks]; B[ks] :
kk := kk+l; ks := ks+l;

1f kk<k then go to L3;

kk := kk+3J; ks := ks+JJ;

if kk<ku then go to L2;

if J>Mm then

begin J := J-1; 1 := 141; LST(1] := J; g0 to L end;
if 1>0 chen
begin J := LST[i]; 1 := 1-1; kb := ks; g0 to L end;

©nd REORDER;



procedure REALTRAN(A, B, n, negexp, inverse);
yalue n,negexp,inverse; integer n;
| Boolean negexp, inverse; array A,B;
comment If inverse 1s false, this procedure unscrambles the complex transform
of the n even numbered and n odd numbered elements of a
reel sequence of length 2n, where the even numbered
elements were originally in A and the odd numbered elements
in B. Then it coumbines the two real transforms to give the
Fourier cosine coefficients A[0], A[l),... A[n] and sine
coefficients B[0], B[1],... B[n] for the full sequence of
2n elements. If inverse 15 true, the process 1is reversed,
and a set of Fouriler cosine and sine coefficients is made
ready for evaluation of the corresponding Fourier series by
means of the fast transform. In either case, the value of
negexp must agree with that used in procedure FASTFOURIER
or REVERSEFOURIER with which REALTRAN is palred. Going in
either direction, REALTRAN scales by a factor of two, which
should be taken into account in detzrmining the appropriate
overall scaling;

begin integer J,k,nh;

real aa,ab,bs,bb,re,im,ed,cn,sd,sn, rad, r;

nh := n + 2; rad := 3.14159265359/n ;
sd := sin(rad); r := -(2xsin(0.5¢red))t2;
ed := -0.5xr; cn := 1; sn := O;

1f "1 (negexp

inverse) then sd := -sd;
if inverse then

begin cn := -1; cd := -cd; B[O] := B[n] := O end else
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w1k

begin A[n] := A[0]; B[n] := B{0)] end;

for J :-Ostepluntilnhg_g
begin k := n-J;
aa := A[J)+A[k]; ab := A[J]-Alk];
ba := B[J]+B[k]; bb := B[J]-BlkJ;
re := cnXba+snxab; im := snxba-cnxab;
B(k] := im-bb; B[J] := im+bb;

Alk) := sa-re; AlJ] := aa+re;

cd := rxen+ed; cn := cd+en;

sd := rxsn+sd; sn := sd+sn;
end;
if inverse then A[n] := Bln] := 0;

end REALTRAN;

I g Yo s <y~
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These procedures were written originally for use on the Burroughs
B-5500 system. Because of the limitation of no more than 1023 words
in a single dimensiona.. . ‘ray on this system, two-dimensional data arrays
are used for transforms with m>9. With this modification, resl transforms
with m=16 (217 data points) take about ten minutes of processing time
and six minutes of input-output channel time for the (automatic) transfer
of array rows between disk and core storage. Several traﬁsforms of this
silze have been computed, while sharing the computer with other programs.
Experience with a large number of transforms with m>lk (exceeding actual
core capacity) has shown that multiprogramming causes little increase in

running times,
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COMMENT DRIVER PROGRAM FOR TESTING FAST TRANSFORM PROCEDURES
BEGIN REAL SS1+SS2,RX+RYsR}
INTEGER UoKoMoNeNN»ROMS
ARRAY AsByX»YL0:51213
COMMENT DECLARE PROCEDURES FASTFOURIER. REVERSEFOURIERs, REORDER
AND REALTRAN;
COMMENT DECLARE PROCEDURES FASTTRANSFORM AND REALTRANSFORM:
$= 93 N = 2¢M: COMMENT DIMENSION OF PROBLEM:
ROM 3= 1237 COMMENT INITIAL RANDOM NUMBER, ODD AND < 24273
NN 3= N=13 FOR J 2= 0 STEP 1 UNTIL NN 00
BEGIN COMMENT FILL DATA ARRAYS WITH NORMAL DEVIATES, MEAN=0, SeDex13
LR: RDM := 3589xROMi RDM := RDM-(RDM + 134217728)x134217728;
RX 3= (ROM~67108864)/67108864}
ROM 3= 3589xRDMi ROM * - PDM~(RDM + 134217728)x134217728;
RY := (RDM=-67108864)/67108864}

R I= RX#2+RY$2; IF R21.0 THEN GO TO LR}
R 3= SQRT(~2xLN(R)/R)}
ACJ] = XCLJ) := RXXR$ BLJ]) := YLJ] = RYXR;

END;
ACN] = BIN] = XN := YON] = 03
FASTTRANSFORM(A+»BsMsFALSE) 5
FASTTRANSFORM(A+B+Ms TRUE) §
SS1 3= §S2 := 04 FOR J 3= 0 STEP 1 UNTIL N DO
BEGIN SS1 := (ACJI-XCJI)P 245513 ACJI 2= XLuds
§52 = (BLJUI-Y[J1)? 24552} BLJY] 2= YCuds
END} o
SS1 := SQRT(SS1/N); SS2 := SQRT(SS2/N)
COMMENT LIST ROOT-MEAN-SQUARE ERRORS FOR REAL AND IMAGINARY



PARTS OF THE COMPLEX TRANSFORM=INVERSE PAIR}
WTREAL(1,551)% OUTREAL(1,5S2)1
EALTRANSFORM{A+BrMsFALSE) 3
EALTRANSFORM(A+BsMs TRUE) 3
S1 3= SS2 := 03 FOR J := 0 STEP 1 UNTIL N DO
IEGIN SS1 = (ALUI=XLJ1)42+45513% ACJD = XLUds

SS2 iz (BLJI=-YLJUD+2+4552; BLJ] = YLJUY;

ND?

91 3= SURT((SS14SS2)/(N+N)) 3

'OMMENT LIST ROOT-MEAN-SQUARE ERROR FOR REAL TRANSFORM=INVERSE PAIR}
WTREAL(1¢5S1);

ND}




